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NOTE.
The following has been written for the use of the Inspection

Department of the American Luxfer Prism Company. Each

Inspector is expected to become familiar with this treatment before

entering upon his work, and to use it for reference in his inspec

tion work.



INDEX OF REFRACTION.

The ordinary velocity of light is something like 186,000 miles a second.
This is the velocity in vacuo, e. g., as light travels from the sun to the earth.
If the light passes through any medium other than that which is known as
the ether, the velocity of the light is different from the value given above,
and sometimes is very difierent. In all known media, the velocity of light
is less than in vacuo. The ratio of the velocity of light in vacuo to the
velocity of light in any particular substance is called the index of refraction
of that substance. This index of refraction varies for different colors of
light, the blue light traveling slower in dense media than the red, so that the
index of refraction for blue light is greater than that for yellow or red light.
It is customary to give the index of refraction for the yellow rays as the
index of refraction of any body. The index of refraction for the glass of
which Luxfer Prisms are made, is about 1.53, z'. e., the velocity of yellow
light in this material is about two-thirds that in vacuo or about 120,000 miles

a second. The index of refraction for air is about 1.0003, which may be

regarded as unity for all our purposes.
It is a matter of every day experience that the direction of a ray of

light through ordinary media is a straight line. It is in recognition of this
fact that the savage has learned to aim his arrow and the modern marksman

his long distance rifle. This truth was realized long before the nature of

light was suspected. Modern science has shown light to consist of a series
of waves which are perpendicular to the direction of propagation, or to the
ray itself; and, if we could see the waves, their cross-section would probably
remind us very much of the waves coming in on the lake shore. What is

emphasized here is that the wave-fronts are perpendicular to the direction in
which they travel.
When light passes from one medium to another we have seen above that

its velocity is changed. Its direction is also changed. We shall now see
that this change of direction of the ray is a result of the change of velocity.

In Fig. 1 let f-K and A-M represent waves of light moving in the
direction indicated by the arrows, and falling upon the surface of glass 5- T.
In a short time after the wave has taken the position A -M, the part of the
wave which was at C, will have passed through the distance G]? with the
velocity of light in air. During the same time the part of the wave which
was at A will have passed through a distance about 7
3 as long as C-B. If
we strike an arc G-H from A as center, with a radius % of the distance C-B,
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we are quite sure that the part of the wave formerly at A will be found
somewhere upon this arc. The wave fronts f-K and A-M are practically
straight lines and we know by experience that the wave fronts after passing
through a plane surface are still straight lines. If we draw through B a
tangent to the arc G-H this line B-D will fulfill all the conditions above for
the wave front at the second instant of time considered, and by a more
elaborate discussion may be shown to be the actual position of the wave front.
It will be noticed that the direction of the wave has changed. If v| is

the velocity of light in air and v2 is the velocity of light in glass,

v1 __ CB _ AB sin CAB _ sin CBF _ sini3 _.TD _ ABsinABD — 5075— £117
where z' is the angle of incidence CBF of the ray striking the glass and r is
the angle of refraction DAE of the ray after entering the glass.
Above we defined the index of refraction as the ratio of the two

velocities XL. We now find that this index of refraction is equal to the ratio
2

of the sines of incidence and refraction. This definition is the one which is
used in all mathematical work in light and in what follows we shall use for

. i
'

our law of refraction, n I -

sin r

THE PATHS 0F RAYS THROUGH PRISMS.

Let ABC (Fig. 2) represent a section through a refracting prism, and let
the light fall upon the prism in the direction DB. We wish to find the direc
tion which the light takes in the prism. Construct at B, as center, two cir
cles the ratio of whose radii is equal to the index of refraction. The path of
the incident ray strikes the inner circle at E. Project E perpendicular to
AB, striking the larger circle at F. FB is the direction of the ray in the prism.
For,

EG
sm 1:
5-?

sin j: Fl]FB
EG : FH
., I@ziili
EB sin j

i is the angle of incidence, therefore j is the angle of refraction.
To find the direction in which the light leaves the prism, project F per

pendicular to the face CB, striking the smaller circle at the point K'. KB is
the direction in which the light leaves the prism. The reasoning is similar

to the above.



Let us find the prism angle required to change light from one given
direction to another given direction. In Fig. 3, AB represents the surface
of the prism. The light falls upon this surface in the direction DB, and we
wish to throw this light in the direction B]. Project E perpendicular to
AB, striking the outer circle at F. Produce jB, striking the smaller circle
at G. Draw BH perpendicular to PG. ABH is the prism angle required.
Fig. 4 shows the path of the ray DE through the reflecting prism ABC.

FB is drawn parallel to DB. F is projected perpendicular to AB. G is
projected perpendicular to the reflecting surface BC. H is projected perpen
dicular to the refracting surface AC. [B is the direction of the ray on
leaving the prism.

PRISM CURVE TABLE.

Upon the prism curve table the curve marked] was constructed in the
following manner: A diagram similar to Fig. 2 was made for a prism having
an angle ABC equal to thirty degrees, and a large number of rays DB were
drawn striking the prism, and the direction of each of these upon leaving
the prism was ascertained. For instance, it was found that the light coming
at an angle of eighty degrees from the vertical leaves the prism seven

degrees above the horizontal; that a ray coming at an angle of seventy-four
degrees from the vertical leaves the prism in a horizontal direction; that a
ray striking at an angle of fifty-nine degrees from the vertical leaves the
prism at an angle of fifteen degrees below the horizontal. These various

points were plotted on squared paper similar to that used in the curve table

and the smooth curve marked f on the prism curve table was drawn through
these points. The curves for the other prisms were drawn in the same
manner.

The numbers on the lower line of the prism curve table, 20, 30, 40,
etc., are the zenith distances of the rays striking the prism plates. The
numbers at the left side of the table are the directions in which the rays
leave the prisms. H indicates the horizontal direction, the numbers below
H indicate degrees below the horizontal, and the numbers above H indicate
degrees above the horizontal. For instance; a ray striking the fifty degree
prism at an angle of sixty degrees from the vertical, leaves the prism in a
horizontal direction. The ray striking this prism at an angle of sixty-five
degrees from the vertical leaves seven degrees above the horizontal, and the

ray striking this prism at an angle of fifty degrees from the vertical leaves
at an angle of eleven degrees be10w the horizontal. The prism curve table
saves us the trouble of making a diagram such as Fig. 3, whenever we wish
to change light from one direction to another. For instance; if we wish to
. throw light coming from an angle of fifty-five degrees from the vertical into
a direction one degree below the horizontal, we see at once that the fifty-five

degree prism will answer this purpose.

6
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At the right of the prism curve table is a table made in the following
manner: The headings of the columns 10, 20, 30, etc., mean feet distant
from the window inside the room. The numbers given in the columns
below are the product of the number at the head of the column multiplied
by the tangent of the angle given at the left of the table. This is convenient
in estimating the direction in which we wish light thrown into the room.
If we wish the light thrown toward a point which is one hundred feet from
the window and seven feet below the window, we look for the 100 and 7 at

the right side of the table, instead of reducing this to degrees and looking
at the left side of the table.

TO DETERMINE WHAT PRISMS T0 PLACE IN A WINDOW.

The general method of lighting by means of Luxfer Prisms is to throw
the light from the sky directly into the room. We treat the sky itself as a
luminous surface. We do not derive our light from the sun directly. If we
did this, we should need to change our prisms every hour of the day. The
sky itself is very bright in comparison with ordinary objects. The light
from the sky ordinarily falls upon a window and goes straight through and
reaches the floor at a point not very far distant from the window. The floor
is of a dark color, reflecting perhaps only one-tenth part of the light falling
thereon, so that perhaps nine-tenths of the light is lost upon reaching the
floor. If prisms are placed in the window the light is thrown directly back
into the room before striking the floor. The first object which this light
strikes is the one which we wish to illuminate, and in general it is of a light
color. The prism plate in the window practically takes the place of a
skylight. It is to be thoroughly understood that prism plates placed in
windows do not increase the quantity of light entering the room. They
simply redistribute the light in such a manner that it is utilized to a much
better advantage.

UNIFORM PLATE.

In determining the proper prism to place in any window, we must know
both the direction in which the light falls upon the prism, and the direction
in which we wish to have the light leave the prism. If we know the
direction in which the lowest light falls upon the prism, we know for
ordinary cases that the other directions lie between this and the vertical, and

if we know the direction in which we want the highest light thrown in the
room, the other directions in which we wish light will be between this and
the vertical in a downward direction. If we throw the light which falls upon
the prisms in the lowest direction so that it leaves the prisms in the highest
direction desired, then, in most cases, the other rays of light falling upon
the prisms between the lowest direction and the vertical will illuminate other
parts of the room which we wish lighted, and our problem is substantially
solved.



In Fig. 5, let L, be the lowest direction in which light falls upon the
prism plate, and let A be a desk which it is desired to illuminate and which
is the object farthest back in the room and highest up from the floor that we
wish to illuminate. If such a prism is placed in the window that the light
L, (striking the lowest prism in the window), takes the direction D, (the
direction from the lowest prism to the desk), then the desk A will be lighted
by every prism in the window; for, although the light L, which is parallel
to L, and strikes the upper prism of the window, goes above the desk A,
there will be some other ray L3 higher than L2 which will take the direction

D3 and strike the desk. All the other rays above L3 will go lower than
D3 and into the part of the room which we wish to illuminate, and practically
all the light striking the window will be utilized.
If there is no prism which will throw the lowest ray directly upon the

point desired, it is usually best to select the one which throws the light
above the point. In rough work it is sufficient to throw the light in a hori
zontal direction and in rooms which require a general illumination it is better
to throw the light rather high than to confine it too nearly to the floor. For
the general effect of the window plate upon people inside the room, it is

commonly best if there is light enough to spare, to arrange the prisms so
that none of them will appear dark to a person in any part of the room.

PLATE OF VARYING PRISMS.

In may happen in case the prism plate is quite deep and in case the desk
A is quite near the window, that it will be desirable to place a prism in the
top of the plate which is different from that placed in the bottom of the plate.

Suppose that we wish to place prisms in an upper sash five feet deep, the

zenith distance being fifty degrees, and we wish to light a desk twenty feet
from the window, the top of which is four feet below the lower edge of the
upper sash. Looking at the right of our table, finding the column headed
twenty, and taking the line marked 3.9, and following it to the left we find
it intersects the vertical line marked fifty upon the L prism curve. If,
therefore, we place the L prism in this window we will light the desk satis
factorily, and the most of the remaining light will fall between the desk and
the window. It may be noticed, however, that the K prism curve crosses
the fifty degree angle at 6.5 feet below the horizontal, twenty feet back. So
that, if we put L prisms in the lower half of our window and K prisms in
the upper half, we shall accomplish the same result so far as the desk is

concerned, and shall not throw so much light over the desk, but will save
this for the space between the desk and the window, the area which we

wish to illuminate.
Y

LIGHT NEAR THE WINDOW.

Referring now to the intensity curve table, it will be noticed that the
space which before was brightest in a room is now left practically without
light. The lowest light from the P prism is 23° below the horizontal; from

8
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the N prism 31°, etc. It is evident, therefore, that there is a dark area in a
room near the window. In order to obviate this difficulty, it is absolutely
necessary in almost all cases to insert a few prisms of low angle in the prism

plate. For instance: given a zenith distance of 40° we should probably
choose either the 65° or 70° prism for the body of the prism plate. Suppose
it is 65°. The light from this prism goes down as low as 28° below the
horizontal. but for the last few degrees the light is not very brilliant, as
indicated by the intensity curve to be explained later. In order to illuminate
the area left dark, it will be necessary to insert either some f or K prism
lights. The quantity of the low angle prisms can be obtained roughly by
considering the area to be lighted by these and by the body of the prism
plate. If the area to be lighted by the body of the prism plate is on the
average 30 feet from the window, and if the area to be lighted by the low
angle prisms is on the average 10 feet from the window, then, since roughly
the intensity of the light varies inversely as the square of the distance from
the window, the proportion of the two window lights should be about as 100
is to 900. The proportion ordinarily used is from 10 to 20 per cent. As a
matter of choice in the case illustrated above between the j and the K
prisms, probably the K should be selected simply as a matter of appearance.
If the / prism were selected it would be possible to select a point in the room
such that there would be a line of prisms across the window, all of which

would be dark.
The method of using the intensity curve table rapidly is to select the

prism, trace this curve down to the left hand side and then trace the hori

zontal line to the right back to the zenith distance and select the proper
prism curve at that point for the low angle prism light. In many cases even
where the light is not required up close to the window, it is still advisable
to insert a few of these prism lights of low angle in order to relieve the
monotony of the uniform prism plate. This effect is seen both from the
inside and from the outside.

RAYS NOT IN THE PRINCIPAL PLANE.

EDGE.

The edge of a prism is the line in which the two refracting faces
intersect.

PRINCIPAL PLANE.

The principal plane of a prism is the plane which is perpendicular to this
edge. Although we have not said anything heretofore about the principal
plane, it has been tacitly understood that we have been treating of rays
which are in this plane. Other rays have not been entirely disregarded, but
it has been assumed that if the rays which pass through the prism in the

9
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principal plane are attended to carefully, the side rays will take care of them
selves. As a matter of experience, we know that in the case of a uniform
building across the street, if the prisms throw the direct light high enough
no trouble is ever found with the side light. Indeed, we shall soon see that
the side light goes higher than the direct light. It often happens that by
the side of the building across the street stands one a few degrees higher.
We should know which building requires the higher prism. It often happens
that this second building is so high that tilted prisms are necessary. We
should be able to find the final direction of any ray from such a sky. We
shall take up, first, refraction at a single surface, finding two general truths,

which we shall then apply to the prism. We shall find a fairly convenient
and accurate method of working out all information needed in actual work.

PLANE SURFACE.

In Fig. 6, CC represents the upper surface of a body of glass. The ray
A0 strikes this surface at 0 and gives rise to the refracted ray OB. We
shall suppose that A0 is drawn of unit length and OB of a length equal to
the index of refraction, n. MON is a normal to the surface at 0. Upon
this drop the perpendiculars AM and BZV. These lines AM and BN are
equal and parallel. All these lines are in the plane MODE. Let us now
consider some other plane passing through the normal such as MPFG.
Upon this plane drop the perpendiculars AP and BQ, and draw the lines
MP, P0, NQ, Q0. The angles P/I/[A and QNB are equal and the triangles
PMA and QNB are equal in all respects. If s:A OP, H:P0/II, s'IBOQ,
H’:QON, remembering that A0 is unity and OB, is n, we have

sin s=PA=QBIn sin s',
cos s . sin [JIPMzQNIn . cos s’. sin H’.

1. sin s:n sin s'.

. cos 5’ .
2. sm Hzn. .srn H’.

cos s

These are two very important principles.

A. The angles which the incident and refracted rays make with any
plane through the normal to the refracting surface are related by the law of
refraction.

B. The projections of the angles of incidence and refraction upon any
plane through the normal to the refracting surface are related by the law if

cos s'

cos s.
refraction, the index of refraction being changed to n .



PRISM.

The application of these two principles to prisms is easy. At the first
face of a prism let s be the angle between the principal plane and the ray
when outside the glass and s' the angle when inside. Let land 1’ be the
corresponding angles at the second face of the prism. Now it is to be noticed
that both s' and l’ are angles between the principal plane and the ray inside
the glass. They both refer to the same ray and to parallel principal planes
so that they must be equal.

l':5/.
sin s:n sin s'
sin l:n sin 1'.
[:5 .

If the prism were a reflecting prism there will follow one more step in
the proof, but if the principal plane remains the same the following result
is independent of the number of internal reflections.
C. The angle between a ray and the princzjbal plane is always the same

in the same medium. The angle between a ray and the principal plane is the
same upon leaving the prism as it was upon entering it.

Corresponding to (B) above, we have for the prism:
D. The projections of the incident, refracted, reflected, and emergent rays

upon the principal plane of a prism obey the same laws as rays in the principal
I

plane, the index of refraction being changed to n . 5%
Figures similar to Figs. 2, 3 and 4, may be used in tracing these pro

jections of rays through prisms. It will be noticed that C and D furnish us
means of finding the final direction of a ray striking any prism in any
direction.

The following is a table of modified indices of refraction:

S I!
cos 5,

S 11
cos 5’

C055 C055

0° _________ _.1.53 45° .......... -- 1.92
5° .......... _.1.53 2.06

10° __________ -.1.54 55° .......... -- 2.25
15° __________ _.1.56 60°_______.-__. 2.52
20° __________ __1.59 65° __________ _- 2.92
25° 3.53
30° ____________1.67 45s
35° __________ __1.73 80° __________ _- 6.74
40° __________ __1.81 85° .......... _.12.96

These may be obtained graphically by means of a figure similar to Fig.
2. The side angle s is represented by EBH If BB is unity and if BF
is n, then the modified index of refraction is represented by the distance
from B to the point of intersection of BB and HF.

12



SKY GLOBE.

In Fig. 7, BLFR represents the HORIZONTAL PLANE. ZLNR represents
a plane passing through the vertical wall upon which a prism plate is

mounted. We shall call this the WALL PLANE. ZFNB represents a vertical
plane which is at right angles to the wall plane. We shall call this the
PRIMARY PLANE. We shall call

Z, Zenith point.
N, Nadir point.
F, front point.
B, back point.
R, right point.
L, left point.

If we obtain a small globe which has been painted black, we may draw
upon it the three great circles described above, their intersections corres
ponding to the points above defined.

SKY DIAGRAM.

The vertical edge of a building is represented upon the sky-globe by an
arc of a great circle passing through the zenith and nadir points (Z and N).
The top of an uniform building which is parallel with the street (LR) is
represented by an arc of a great circle passing through the right and left
points. If this building makes an angle (b) with the street the great circle
representing its top will pass through two points upon the horizon line at a
distance (b) from the right and left points. In particular if the building is

at right angles to the street, 6: 7
2
1
—
,

and the great circle passes through the

front and back points (F and B). We are now able to draw the outline of
any sky, the sky of course is represented by the area inclosed.

STRAIGHT PRISM PLATE.

In the case of the ordinary vertical prism plates, the lights of which are
not tilted, it is noticed that the principal plane coincides with the primary
plane. We draw our sky diagram as above. Select one corner and let us
find in what direction a ray from this corner emerges from a given prism.
Drop a perpendicular from the corner to the principal plane. The length

s of this perpendicular shows, first, that the ray emerges at the same dis

tance from the principal plane, but upon the other side ; it shows, secondly,
the index of refraction to use. Taking this index of refraction, we work
out by diagram the point on the principal plane which is the projection of
the emergent ray. The real point of emergence is at a distance s from this
point as explained above.



Treat each corner of the sky diagram as above and connect in order the
points of emergence thus found; the area thus inclosed represents the solid
angle lighted by the window. We may map this solid angle very con—
veniently, using the point B as origin, as shown in Fig. 8 (using Mercator's
projection). Lines parallel to LR represent great circles on the sky globe,
and those parallel to NZ, small circles having L and R as centers. The
points obtained may be conveniently recorded by these co-ordinates, distances

along BZ and BR being positive.

TILTED PRISMS.

When the building directly across the street is very high, with an
adjoining building quite low, it is often advisable to tilt the prism lights in
the plane of the prism plate. In working out the solid angle of light for a
window where these tilted lights are used it must be carefully remembered

that our principal plane no longer coincides with the primary plane, but the
two intersect at the front and rear points, making an angle equal to the
angle of tilt. The projections of the corners of sky must be made upon the
principal plane. not the primary plane, and in interpreting the results care
must be used not to mix the two planes. Such a prism and such an angle
of tilt must be selected as gives the best distribution of light in the room.

CANOPY.

When we use the straight canopy, set at a slope at from the vertical, we
return in our sky globe to the 01d principal plane—the primary plane, but

the plane representing the prism plate is no longer the wall plane, but inter

sects this at the right and left points at an angle a. Measure angles of
projection points from surface of canopy—not from zenith point.

TILTED CANOPY.

An additional complication arises when we use tilted canopy lights.
We have as before our prism plate plane making an angle a with the wall
plane. The normal to the prism plate is in the primary plane, and at a

distance (‘2L_a) from the zenith and nadir points. The principal plane of
the tilted prisms must pass through this normal and hence is a great circle,

intersecting the primary plane at a distance _a) from the zenith and
nadir points, and makes an angle with the principal plane equal to the angle
of tilt ( T). Care must be used in working the rays through the sky globe
and interpreting the results.

QUANTITY OF LIGHT FALLING UPON A PRISM PLATE.

If we imagine a prism plate at the center of a sphere and imagine it
illuminated through a small hole in the surface of the sphere the illumination

due to the direct light is proportional, (1), to the brightness of the lumin

l4



ous surface held before the small hole; (2), to the area of the hole; (3),
to the reciprocal of the square of the radius of the sphere; (4), to the area
of the prism plate; and (5th), to the sine of the angle between the prism

plate and the radius touching the hole. If the hole subtends at the center a
small solid angle a'Q, the radius becomes unity and we may write the ex
pression B WD sin t. dSZ.
If the hole in our sphere is of considerable size we must integrate the

above expression over the entire solid angle subtended by the hole.

52

NIWDf Bsintd-Q.
O

The integral is the illumination at the surface of the prism plate and the
product of this by the area in square inches, as above, we have called the
Numeral, indicated by IV.
In our work upon the sky we shall assume that B, the brightness of the

sky is constant, and we shall omit this factor for the present. In Fig. 9, a
prism plate is represented by P set in a vertical position. The right half of
the sky is represented by the surface ZRF. In order to express the position
of any point (B) upon the sky, we pass through this point two great circles
AF and CR, which also pass through the front and right points respectively.
the primary angle ZC, and the wall angle ZA determine the point. We
shall use p to denote primary angle and w to denote wall angle. For
present purposes we shall let p, denote zenith distance of a building across
the street and w, the wall angle of a side building, adding r and l to indicate
which side. we shall use s to denote the distance BC for any point. s, the
same for any point along the limiting line AF and so — o for the point p, zoo
If DC is dp, GB is dp. cos s, B] is ds, and the element of area (or of

solid angle) of sky BGH/ is cos s. d1). ds. The angle (t) between the
surface of the prism plate and the radius touching B is the angle BA. From
spherical trigonometry we know that in the spherical triangle BAR right
angled at A,

sin AB=sin RB’ sin ARB
=cos s. sin ,5.

Vle write now for our numeral,

N:
I/VD/sint.d$?:
WD//

coss.sinp.cos s. dp.ds

=
WD// sinp.cos2s.dp.ds.

l5





If we integrate this with respect to s between the limits 0 and s, , our
element becomes the area of a part of a lune CBGD, all in the right half
of the sky. If we then integrate with respect to p, between the limits 0 and
p, , the result is the numeral for the right half of the whole sky exposed.
The numeral for the left half will be of exactly the same form and may be
added when we get through.

)0 sr

erWD/ /sinp.cos2s.dp.ds.
O 0

fig 8

:WD/sianlzcosssins—I—lzs].dp
O

P

N,=%WD./sinp(cos.s,.sinsr+s, )dp.

Now s, is a function of p, but we may just as well regard p as a function
of s, . When 13:0, s, :u'o , when pzpo , s, :so ; and in general we know
from spherical trigonometry that in the spherical triangle BCF, right angled
at C,

sin CF:tan BC. cot BFC,
or cos pztan s, . cot zoo .

Difl'erentiating

—sin]>. dp. :cot zoo . d (tan s, ).
:cot zoo sec 2 s, d s, .

Substituting

so

Nr :——%
WD/cotwo (sec2

s,. cos s, . sin s,. d s, + 5,. d tan s,
)

too

so

=—%
WD/cot

zoo
(tan
s, d s, + s, d tan s,

)

wo

50

=-—% WD[cot
zoo . s, tan . s, ]

71/0

= % Wchot zoo
. wo . tan zoo —cot zoo . so . tan so ]

= %

WD[u'o—so
. tan so. cot zoo

l7



We have seen above that

cos po = tan so . cot wo
tan so : cos po . tan zoo .

Substituting

N, =% WD[
zoo —cot zoo . cospo . tan zoo . tan'I

(c
o
s

po . tan zoo

_—_% WD[ zoo
—-cos 1),. tan‘l

(cos
po. tau wo

If zoo : a
2

Nr :%
WD[_72i—_:cos

[fio ]
=7” IVD[1~—cos

p,

Of course the whole numeral is obtained by adding that for the left side
of the sky. It is interesting to see that our final result for an open sky,
with the exception of a constant factor, is identical with the First Numeral,
which has been in use for some time.

THIRD NUMERAL.

Fig. 10 represents a prism plate P, set at a slope (a) from the vertical.
Any point B upon the sky is found by passing through it the great circle
RBC and the small circle ABD [pole at R] , the co-ordinates are ZC and ZA ,

indicated by p and s respectively. For our element of sky area we have

d9: cos s . ds. dp.
sin t = cos s. sin (a—I-p).

NIWD/sin

t . d5!

=
WDf/cos2

s. sin (a—l—p) ds. (1/).

Sr 1%

N:
WD/cos2

s.

[s
in (a-I—p) dp.

SI 0I
sin s, cos s, — sin s, cos s, + s, — s, ] [c

o
s

a — cos (a—I—p)

If s, z—sr=s

N=WD[
sin s coss + s] [c

o
s

a~cos
(a—I—p)]
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Ifszl
2

N:WD.%[cosa—cos (a+p)].
If azo.

N:WD
[1 -——cos;>].

If in the above 15 I32°

N:
WD(1'—~cos

(a +1»).
If a=0.

N:
WD(1

—cos p)
In actual practice not much light is utilized in a room through a greater

horizontal range than 60° no matter whether the sky is open at the side or
not. Making this assumption we may adopt the second equation above as
our definition of the First Numeral.

FIRST NUMERAL.

Fig. 10 shows a section through a window in which is placed the prism
plate of width Wand depth D. The reveal immediately overhanging the
window is of width r. The zenith distance is 2, which is constant for the
window, since the buildings limiting the horizon are distant. Let x be the
distance of any point on the window below the edge of the reveal, and let b

be the zenith distance of the reveal at that point on the window.

Accordingly,

N1
=W/ (cos

b—cos z)dx - - - - - - 1.

Substituting for b its value in terms of x and rand introducing the
proper limits of integration, our First Numeral becomes,

0

N1 2W/ (cos (tan-1%) —cos 2) dx
- - - - - 2.

r cot z

D

NIIW/(fi—cosz) dx - - - - - 3.

rcotz

which when integrated becomes,
D

N1:W[(VW—xcosz)]
- - - - - 4.

I’COL 2
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Substituting the limits of integration we have

N1=W(VD2 +r2—Dcos z) —-Wr (t/cotzz + 1— cot 2 cos 2) 5.

This expression when simplified takes the form

N1=W(VD2+r2°—Dcosz——rsinz) - - - - 6.

This is our final expression for the First Numeral in the case of the
window shown in the figure. If we suppose that the reveal is at a height h
above the top of the prism plate, the formula No. 6 is slightly changed and
there arises two cases. The first case is where the upper edge of the prism
plate is entirely in the shade, i. e., when h is less than r cot z. The formula
in this case is

N: W[v’(D+/Z)°+1~°_(p+h) cosz—rsinz] - 7.

If the upper edge of the prism plate is not in the shade, i. e., if his
larger than r cot 2, we must change the limits of integration in formula No
4, the lower limit being h instead of r cat 2 and the upper limit being D+h
instead of D. The formula when simplified takes the form,

N1=W(Vh+[))2+r2—N/hz—I—r‘i—Dcosz) - - s.

In case we have no reveal, r=o, and this formula is reduced to the
original formula,

N1: WD (1—cos z) - - - - - - - 9.

It will be noticed in formula N0. 7 that the first term in the parenthesis
is the distance from the outer edge of the reveal to the lower edge of the
prism plate. The sum of the second and third terms is the projection of
this line upon the lowest incident ray of light. The various terms in
formulae Nos. 8 and 9 are interpreted in a similar manner. It is evident,
therefore, that the First Numeral may be obtained graphically in a very
simple manner. Figs. 11, 12 and 13 show the construction for formulae Nos.
7, 8 and 9 respectively. In Fig. 11, BC is the depth of the prism plate;
AB is the height h; AD is the reveal r; ACE is the zenith distance. In
order to get the parenthesis factor of equation 7, draw DC, project D per
pendicular to CE; strike the arc FF with C as center. DF is the required
parenthesis factor. In Fig. 12, FG is the parenthesis factor of equation No.
8, and in Fig. 13, AD is the parenthesis factor of equation No. 9.
The above expression, as has been pointed out, is proportional to the

quantity of light striking a window, the limitations as given above, being
carefully attended to. For various reasons this expression is not propor
tional to the illumination given by various windows. In the first place the
walls of the room have a great deal to do with the illumination, and this
question we shall consider later, more in detail. The illumination is not
proportional to the numerals for various prisms because the prisms distribute
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the light differently from the front, back in the room. If prisms were inserted
as is recommended on page 9, so that the light falling upon the prism plate
of high angle is distributed from the front to the rear of the room in a manner
similar to the distribution given by a lower prism angle, then, with the walls
and other conditions the same, the illumination given by prisms of low and
high angles would be strictly comparable. As we do not ordinarily insert in

plates of high prism angles, enough prism lights to illuminate the front part
of the store to the same degree as the rear in comparison with the light
given by smaller prisms, the numeral should be too small for high prism
angles and somewhat too large for low prism angles.
It must be carefully noticed that this first numeral is not applicable to

light wells, where the horizon is limited at the sides, nor to cases of a very
irregular horizon.

DIRECT ILLUMINATION AT ANY POINT IN THE ROOM.

VERTICAL DENSITY.

We have seen that the quantity of light striking a prism plate between
limiting angles of incidence e andf is proportional to the difference of the
sines of e andf. We shall obtain now an expression for the vertical density
of the rays of light upon leaving the prism, i. e., the quantity of light in any
small vertical angle divided by the angle for unit depth of the prism plate.
Assume that we have a prism of angle 1'

, the light striking this at an angle of
incidence u and leaving the prism at an angle y with the normal. The
angles of refraction corresponding to u and y, are 21and 10 respectively. If
we let x=sin u, then the expression for the vertical density of the light

leaving the prism is

D:—%
This vertical density D when multiplied by

the secant of the angle of din is proportional to the apparent brightness of
the prism plate viewed from the inside of the room. We suppose, of course,
that the sky is of uniform brightness. We shall derive an expression for the
value of D in terms of the prism angle and the direction in which the light
leaves the prism. Let n be the index of refraction of the prism and let p be
the reciprocal of n. We have then,

sin u = n sin a

}sin y = n sin 10
o + w = i - - - - - - - - - 2

.

We shall introduce sin u = x as a new variable, and shall get an ex
pression for x involving only i and y and differentiate this with respect to y,
thus giving us D.



sin 2/: [fix - - - - - - - - - 3,

sin w :1) sin y - - - _ - - - - 4,

sin-1 (or) + sin-1 (p any) =1' 1 _ _ _ _ 5
sin“1 (px) = i—— sin"l (p sin y) I

'

px = sin ( i— sin“l (p sin y) - - - - - - 6_

Letj: sin-l (,5 sin y)
sin j =p sin y
cosj:~/1_p2 sine),
xzn sin (i—j): n (sin it/ 1—— 2 singy—p cos i sin y) - - - 7.

Now differentiating N0. 7 with respect to y, we have the value for D.

(_13? _ _sin y cos y _

_—dy:smzvrm+COSlCOS)
- - - 8.

If we wish to obtain the density along the horizontal direction, place
y = i, substituting this in the above we have,

sin2 1‘ cos i
D =:_ @052 1' _ - - - - _ -h

I/n2 —sin2 1'
+

We wish to find the illumination, at a point P (Fig. 16) inside a room
illuminated bya window prism plate having prisms of angle 2'

. The plate is
of width Wand is at a distance S from the point. The line from the lower
edge of the plate to the point makes an angle (i— 2 ) with the horizontal,
while the angle to the upper edge of the plate is (i— , ).

ILLUMINATION.

If D is the density of the rays in any direction, and C a constant to be
determined by experiment, the illumination at the point is equal to the

following expression:

)6:
W

L—C—S—fDdy
- - - - - - - 1

3'1

3’2. ._ W smisiny ,

L—C—g/(V—‘mi523I-i-cosz)
cosy dy - - - 2

.

,71

When this is integrated and reduced we have the following as the
illumination at the point, due to the window prism plate directly:

L=C%V[cos

i (sinyg—sinyl) +

sin 1' (V n2 -——sin2y1 —V n2 — sin2y2 ]

- - - 3
.
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This expression will enable one to estimate the quantity of prisms needed
to illuminate a desk if it is known that a person using the desk ordinarily
uses a light of a certain candle power in a certain position. It is to be under
stood, of course, that this gives only the direct light and that the light
which arises by diffusion from the other parts of the room will materially
increase this illumination, and in making any such estimate, this extra light
will need to be considered very carefully.

A PROVISIONAL LIST OF PHOTOMETRIC UNITS,
BY HENRY CREW.

The insuperable difliculty of measuring photometric quantities in
mechanical units renders more or less unsatisfactory any system of units we

may adopt for dealing with luminous energy.
For the sake, however, of intelligent communication with each other,

some such system is indispensable.
We have accordingly adopted the following as representing the best

scientific usage.
In practice we shall seldom, if ever, have occasion to deal with the total

radiation which any source of energy emits.
For the present we are engaged in transmitting only that portion of the

total radiant energy which is capable of affecting the retina of the normal eye.
To this fraction of the total radiant energy we shall give the name,

LUMINOUS ENERGY.

Concerning this term the following two points are to be borne in mind:
1st, that while it is a practical impossibility to go into the laboratory and
measure just what fraction of the total radiant energy exists in the form of
luminous energy, yet this fraction is a perfectly definite quantity; 2nd,“ Luminous energy ” is equivalent to “light” only when the latter is used
in the narrow sense so as not to include actinic and thermal effects.
These conventions fixed, we are ready to consider the following photo

metric quantities:
I. Intensity of a point-source, (or of a source which is suflficiently

small compared with its distance to be treated as a point-source)
is defined as the amount of luminous energy emitted per second.

The word “intensity” is used in a great variety of senses in scientific
terminology. If, therefore, any ambiguity should at any time arise as to its
exact meaning, it may be modified to read “luminous intensity ” which is
never employed in any sense except as above defined.

Concerning the nature of intensity in general, it need only be added
that it does not represent a quantity of energy such as that contained in a
storage cell or in a coiled spring. It is a rate of flow of energy, a ratio
between a quantity of energy and a time. The product intensity X time is
luminous energy and this product determines the amount of one’s gas or
electric-light bill.
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Since it is impracticable to determine intensity in mechanical measure,

the following unit is adopted:
‘

Unit of Intensity is defined as the intensity of a Hefner lamp in a hori
zontal direction, the dimensions>I< of the Hefner lamp being those

prescribed by the Reichsanstalt at Berlin.
Name: This unit is called “one candle.”

Sym 601 for
{

1ntenstty, ].
candle power, c. p.

II. Luminous Current is defined as the rate at which luminous energy
is emitted by a point-source through a solid angle of one steradian.

Unit .- The luminous current of one candle, i. e., of one Hefner lamp.

Name: “ Lumen.” Proposed by L. Weber.

Symbol: for
{

luminous current, 5:
lumen, 1m

It is evident that, if a point-source radiated uniformly in all directions,
its intensity would be 4 n times its luminous current, i. e.

1:4 I (.1

III. Illumination is defined as the ratio of the luminous current to the
area upon which it falls.

This is the same as saying that the illumination is measured by the
number of lumens per square centimeter at the point in question. The

numerical value of the illumination at any point in a room measures, in

general, the success with which that part of the room is lighted.
It must not be forgotten that of two equal illuminations, one produced

by rays from one direction only, the other by rays from many directions, the

latter is as a rule much more effective.

Illumination is a property of a surface at a point; and is determined only

by the area and the light immediately incident upon it
,

independently of the

source.

It is evident, however, that in case of a point-source the illumination
varies inversely as the square of the distance between the point and surface;

in case of a linear source the illumination varies inversely as the distance;

in case of a plane source, of practically infinite extent, such as the sky, the
illumination is entirely independent of the distance separating the source

and the illuminated surface.

Unit of Illumination is one lumen per square centimeter.
Name .- “ Lux.”

illumination, E

Symbol. for

{ Lux, Ix

IV. Brightness is defined as the luminous current leaving unit area of

apparent surface.

*For these dimensions, see Palaz, Industrial Photometry, pp. 136-143.

24



The fundamental distinction between brightness and illumination is that,
in the former, the surface is considered as the origin of a luminous current;
while in the latter, the surface is considered as the recipient of the luminous
current.

Unit of Brightness, is that brightness which yields one lumen per square
centimeter of apparent surface.

Name .~ Lumen per square centimeter.

brightness, B
Symbol: for _ _ 2unit of brightness, lm per cm

V. Quantity of Light is defined as the product of the luminous current
by the time it flows.

Unit quantity of light is one lumen for one second.
Name: _ _ _ _ - .

Symbol: _ . _ _ _ _

VI. Diflusion constant, is defined as the ratio of the brightness to the
illumination at any point on a surface.

The numerical value of this constant represents the fraction of the
incident light, at any point, which is diffusely reflected by the surface,
through unit solid angle.
Sometimes brightness is defined differently from the manner in which it

has been defined above, viz: to denote the intensity (instead of the luminous

current) of unit area. In this case, the difusion constant becomes the ratio
between 2 1r brightness and the illumination. That is, if we denote the
diffusion constant by “N,” its defining equation is

_ obrightness_
illumination

In the system of units which we have employed above, however,

_brightness
—illumination

VII.
LUMINOSITY.

In all that has been said above, it has been tacitly assumed that the
quantities under consideration, (brightness, illumination, etc.) refer to lumin
ous energy of the same quality, 2'

.

e., to lights of the same composition, or

colors of the same hue. But, in practice, it becomes very frequently necessary

to compare lights of different color.
In general, indeed, the brightness of the wall of a room has a different

hue from that of the illumination which produces this brightness.
Accordingly it becomes necessary for us to define just what we mean

when we say that a certain room illuminated by blue light is just as brilliantly

lighted as a certain other room which is illuminated by red light.
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The ease with which one can read a newspaper depends not only upon
the intensity of the light with which it is illuminated, but very largely upon
the quality of this light. That particular property of any color which
determines its value as an illuminant is called its “luminosity.H
Thus, for the normal eye, yellow light is much more useful than red of

the same intensity; and red light, in turn, is a more powerful aid to distinct
vision than blue of the same intensity.
It only remains now to give to “luminosity” a quantitive definition.

This is done by the use of a principle discovered by Rood [Amer. four. Sci.
Vol. 46, 3rd Series, p. 173. (1893)], viz: that when a normal eye is allowed
to perceive a colored surface for a short interval of time, say a fraction of a
second, the intensity of the sensation is independent of the hue and depends
only upon the luminosity. If a circular cardboard disc be covered, one half
with gray, the other half with a colored pigment, the two halves will have
equal luminosities when on rotation all sense of flickering disappearing. It
is thus found that each color in the spectrum requires a definite gray to
“match” it. The amount of white in the gray semi-circle which matches
any given color is a measure of the luminosity of this color. In this con
nection it may be added that any color is completely defined only when we

know the following three things about it
,

viz:

1
. Its “hue,” i. e., the wave length of the light in the solar spectrum

which most nearly matches it.

2
. Its “ luminosity.”

3. Its dilution, or “purity,” i. e., the amount of white light which is

mixed with the pure color producing it.
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